WFIRST Microlensing Survey: A To Do List

Scott Gaudi
Matthew Penny
(OSU)

WFIRST Microlensing Survey.

Why?

Science Questions:

- 1. How do planetary systems form and evolve?
- 2. What is the frequency of habitable worlds and what determines their habitability?
- 3. What kinds of unexpected systems inhabit the cold, outer regions of planetary systems?

Primary Science Objective:

Complete the statistical census of planetary systems in the Galaxy, from the outer habitable zone to free-floating planets, including analogs of all the planets in the Solar System with the mass of Mars or greater.

In other words, find lots of planets over a broad a region of parameter space as possible!

Science Requirements.

- 1. Survey an effective number of at least 1500 stars for bound planets in the mass range 0.1-10,000 Earth masses, including at least 150 stars for planets with mass <3 Earth masses.
- 2. Capability to detect bound planets down to 0.1 Earth masses.
- 3. Detect at least 20 free floating Earth mass planets, if there is one per star in the Galaxy.
- 4. Ability to measure masses of at least XX% of the planet host stars to a precision of at least 20%.

Checklist: Survey Planning.

- Yields.
 - Habitable planets.
 - Parameter uncertainties.
 - Systematics.
- Optimization.
 - Fields, cadence, filters.
- Calibration.
- Follow-up.
- Auxiliary Science Data.

Habitable Planets.

Some Uncertainties.

- Event rate.
 - Stellar luminosity function.
 - Mass distribution.
 - Lens population.
 - Planet distribution.
 - False positives?
- Photometric/astrometric precision.
 - Statistical.
 - Systematics.

Checklist: Survey Execution.

- Input catalog
 - Star properties
 - Extinction map
 - Calibrators (astrometric, etc.)
- Pipeline.
 - Source identification.
 - Image subtraction.
 - Light/astrometry extraction.
 - Detrending/systematics removal.
 - Event and planet detection.
 - Automated efficiencies.
- Database and data products.
 - Mirror databases.
 - "Moment" curves.
 - Full, stacked, supersampled images.
 - Postage stamps
 - Calibration data.
- Outreach
 - Planethunters?

To do: Practical.

- · General.
 - Science requirements and flowdown.
- Observational.
 - HST images of target fields (multiple filters).
 - ~4 times the PHAT survey area (3300 orbits!?!)
 - Immediate science: spatial variation of metallicity, MF, blue stragglers, young stars, CVs, WD...
 - Ground-based H-band survey.
 - HST/AO follow-up of ongoing planet detections.
 - Spitzer/K2 parallaxes.
- Experimental.
 - Detector lab tests.

To do: Practical, cont.

- Theoretical.
 - Improve models and yields.
 - Parameter uncertainties.
 - Optimize survey.
 - End-to-end image simulations.
- Sociological.
 - We need help!